Extremality for Gallager's Reliability Function $E_0$

نویسنده

  • Mine Alsan
چکیده

We describe certain extremalities for Gallager’s E0 function evaluated under the uniform input distribution for binary input discrete memoryless channels. The results characterize the extremality of the E0(ρ) curves of the binary erasure channel and the binary symmetric channel among all the E0(ρ) curves that can be generated by the class of binary discrete memoryless channels whose E0(ρ) curves pass through a given point (ρ0, e0), for some ρ0 > −1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submartingale Property of E_0 Under The Polarization Transformations

We prove that the relation $E_0(\rho, W^{-}) + E_0(\rho, W^{+}) \geq 2 E_0(\rho, W)$ holds for any binary input discrete memoryless channel $W$, and $\rho \geq 0$.

متن کامل

Tighter decoding reliability bound for Gallager's error-correcting code.

Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite message length for an ensemble of Gallager's error correcting codes. We follow Gallager's approach of upper bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general bound to date, and to improve on the most accurate zero-error noise level t...

متن کامل

Extremality Properties for the Basic Polarization Transformations

We study the extremality of the BEC and the BSC for Gallager’s reliability function E0 evaluated under the uniform input distribution for binary input DMCs from the aspect of channel polarization. In particular, we show that amongst all B-DMCs of a given E0(ρ) value, for a fixed ρ ≥ 0, the BEC and BSC are extremal in the evolution of E0 under the one-step polarization transformations.

متن کامل

Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. I. The One-Dimensional Case

We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson’s infinite group problem that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically for deciding extremality in this important class of minimal valid functions. We also present an ext...

متن کامل

Core-based criterion for extreme supermodular functions

We give a necessary and sufficient condition for extremality of a supermodular function based on its min-representation by means of (vertices of) the corresponding core polytope. The condition leads to solving a certain simple linear equation system determined by the combinatorial core structure. This result allows us to characterize indecomposability in the class of generalized permutohedra. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2015